Novel Neuronal Phenotypes from Neural Progenitor Cells Biology Diagrams In neural precursors, cell cycle regulators simultaneously control both progression through the cell cycle and the probability of a cell fate switch. Haubensak W., Haffner C., Huttner W.B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 2005; 25: 1. Introduction. Neural stem and progenitor cells are the building blocks of the brain. In the embryo, these cells are located in proliferative zones and produce a variety of neurons and glia through tightly regulated processes that result in the generation of the diversity and complexity of the cellular phenotypes found in the adult brain [1 - 8].

Neural stem and progenitor cells. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365-369 (2002).

Neural Progenitor Cell Overview: Their Role in Brain Development Biology Diagrams
Cortical neurons and glia are generated by neural progenitor cells during development. Ensuring the correct cell cycle kinetics, fate behavior and lineage progression of neural progenitor cells is essential to determine the number and types of neurons and glia in the cerebral cortex, which together constitute neural circuits for brain function.
Over time, these neural progenitor cells undergo temporal progression with respect to two properties (Fig. 1a). The first is the decision whether divisions are purely proliferative (expansive) or not. (Cdk) inhibitor arrests the cell cycle of cortical progenitor cells, and also leads to precocious differentiation 27. Therefore, the This concept is referred to as the radial unit hypothesis; it posits that a radial glial cell (neural progenitor) not only sequentially generates neurons, but also serves to guide neurons out of the VZ along long processes. Cell Cycle 10, 4026-31. doi: 10.4161/cc.10.23.18578. [PMC free article] [Google Scholar] Chen B, Schaevitz LR

The role of cell lineage in the development of neuronal circuitry and ... Biology Diagrams
The time taken by neural stem cells and intermediate progenitor cells to transit through the cell cycle, and number of times they divide, is essential information to understand how new neurons are produced in the adult rodent brain. Inferred lineage and cell cycle parameters for V-SVZ progenitor cells. Data suggest that after the initial
